

3. Describe the relationship between the ratios for $\angle A$ and $\angle B$

(2)	Similar Right Tr	iangles: sine, cosine,	and tangent			\mathcal{Z}
	☐ (a) In △PQF	R, m∠P = 53.2° and m	∠Q = 36.8°. Complete	the following table.		
	Measure of	$\sin \theta = \frac{opp}{hyp}$	$\cos \theta = \frac{adj}{hyp}$	$tan \boldsymbol{\theta} = \frac{opp}{adj}$	36.8	
	Angle	77	21		5	
	53.2°				3	4
	36.8°				53.2	
					$P \xrightarrow{3}$	R

(b) In the triangle at right, $m \angle A = 33.7^{\circ}$ and $m \angle Q = 56.3^{\circ}$. Complete the following table.

Measure of Angle	sine	cosine	tangent	√ <u>13</u> 56.3
33.7°				22.7%
56.3°				A 3

(3) calculator	Similar Right Tr	iangles: sine, cosinn find the set of the s	ne, and tangent A = e and m∠D = d	. Complete the follow	win(E_{\sim}
	Measure of Angle	sine	cosine	tangent	e 7
	d				
	е				$F = \sqrt{33}$

7.4R

(d) In the triangle at right, let $m \angle X = x$ and $m \angle Y = y$. Complete the following table.

Measure of Angle	sine	cosine	tangent	$\sqrt{10}$ x X
x				V 21 3
у				
		•	•	

(e) Tamar did not finish completing the table below for a diagram similar to the previous problems that the teacher had on the board wherer p was the measure of $\angle P$ and q was the measure of $\angle Q$. Use any patterns you notice from parts (a) through (d) to complete the table for Tamar AND draw a diagram of triangle PQR.

Measure of Angle	sine	cosine	tangent
р	$\sin p = \frac{11}{\sqrt{157}}$	$\cos p = \frac{6}{\sqrt{157}}$	$\tan p = \frac{11}{6}$
q			

 \Box (f) Explain how you were able to determine the sine, cosine, and tangent of $\angle Q$ in part (e).

2

\Box (4) Similar Right Triangles: switching the reference angle

 \square (a) If α and β are the measurements of complementary angles, tehn we are going to show that sin $\alpha = \cos\beta$. In right triangle ABC, the measurement of acute angle $\angle A$ is denoted by α , and the measurement of acute angle

 \angle B is denoted by β .

Determine the following values in the table.

$\sin \alpha$	$\sin\beta$	$\cos \alpha$	$\cos \beta$

What can you conclude from the results?

(b) Find values for θ that make each statement true.

a.
$$\sin \theta = \cos (25)$$

b. $\sin 80 = \cos \theta$

c. $\sin \theta = \cos (\theta + 10)$

d.
$$\sin(\theta - 45) = \cos(\theta)$$

(5) Exit Ticket

ON THE LAST PAGE

calculator

Homework

Given the triangle in the diagram, complete the following table.

Angle Measure	sin	COS	tan
α			
β			

Given the table of values below (not in simplest radical form), label the sides and angles in the right triangle.

Angle Measure	sin	cos	tan
α	$\frac{4}{2\sqrt{10}}$	$\frac{2\sqrt{6}}{2\sqrt{10}}$	$\frac{4}{2\sqrt{6}}$
β	$\frac{2\sqrt{6}}{2\sqrt{10}}$	$\frac{4}{2\sqrt{10}}$	$\frac{2\sqrt{6}}{4}$

(8) Homework

Given $\sin \alpha$ and $\sin \beta$, complete the missing values in the table. You may draw a diagram to help you.

Angle Measure	sin	cos	tan
α	$\frac{\sqrt{2}}{3\sqrt{3}}$	$\frac{5}{3\sqrt{3}}$	
β			

Given the triangle shown to the right, fill in the missing values in the table.

Angle Measure	sin	cos	tan
α			
β			

Jules thinks that if α and β are two different acute angle measures, then $\sin \alpha \neq \sin \beta$. Do you agree or disagree? Explain.

Given the triangle in the diagram, complete the following table.

Angle Measure	sin	cos	tan
α			
β			

Secate being the second second

Exit Ticket	Name	Date	Per 7.4	R
-------------	------	------	---------	---

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

1. Given the diagram of the triangle, complete the following table.

Angle Measure	sin 0	cos θ	tan θ
S			
t			

a. Which values are equal?

b. How are tan *s* and tan *t* related?

2. If u and v are the measures of complementary angles such that $\sin u = \frac{2}{5}$ and $\tan v = \frac{\sqrt{21}}{2}$, label the sides and angles of the right triangle in the diagram below with possible side lengths.

7

8				
DO NOW	Name	Da	te Per	7.4R

(2) Draw a diagram to represent right triangle MLB with

Right angle L

Reference angle M

 $\frac{\text{opposite}}{\text{hypotenuse}} = \frac{5}{13}$

 $\frac{\text{opposite}}{\text{adjacent}} = \frac{5}{12}$

(2) What is meant to be humorous about the cartoon below?

